Recent Developments in Copper Hydrometallurgy

John O. Marsden
Senior Vice President, Technology & Product Development
Outline

- Safety
- Historical context
- Solution extraction and electrowinning
- Atmospheric leaching
 - Secondary sulfides
 - Primary sulfides
- Pressure leaching
- Other developments affecting copper hydrometallurgy
Safety

- Phelps Dodge philosophy – “Zero & Beyond”
Hydrometallurgy in Copper Extraction

- Mine
- Primary Crushing
- Secondary/Tertiary Crushing
- Milling (Chalcocite) (Chalcopyrite)
- Flotation
- Heap Leaching (Bornite)
- Solution Extraction
- Electro-winning
- Customers
- Electro-Refining
- Smelting
- Concentrate Leaching
- Acid
- Stockpile Leaching (Chalcopyrite)
- Stockpile Leaching (Oxide) (Chalcocite)
Phelps Dodge – Long Track Record of Technology Deployment

- Large scale SX/EW
- Computerized haul truck dispatch
- GPS ore control
- Leach recovery optimization
- Concentrate grade enhancement

- “Expert” control systems
- Concentrator adaptive control
- Mine for leach
- Haul truck tire technology
- Concentrate leach (2003)

Copper Produced (millions of pounds)
Technology development efforts under way to reduce energy consumption in electrowinning by 15-35%.

Technology not yet proven, but showing promise.
Solution Extraction and Electrowinning at Bagdad, Arizona
<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>Rancher’s Bluebird mine, Arizona</td>
</tr>
<tr>
<td>1971</td>
<td>Bagdad, Arizona</td>
</tr>
<tr>
<td>1974</td>
<td>ZCCM, Zambia</td>
</tr>
<tr>
<td>1976</td>
<td>Miami, Arizona</td>
</tr>
<tr>
<td>1979</td>
<td>Inspiration, Arizona</td>
</tr>
<tr>
<td>1980</td>
<td>Cananea, Mexico</td>
</tr>
<tr>
<td>1981</td>
<td>Pinto Valley, Arizona</td>
</tr>
<tr>
<td>1984</td>
<td>Tyrone, New Mexico</td>
</tr>
<tr>
<td>1985</td>
<td>Ray, Arizona</td>
</tr>
<tr>
<td>1987</td>
<td>Morenci, Arizona</td>
</tr>
<tr>
<td>1987</td>
<td>Sierrita, Arizona</td>
</tr>
<tr>
<td>1987</td>
<td>Chuquicamata, Chile</td>
</tr>
<tr>
<td>1988</td>
<td>Chino, New Mexico</td>
</tr>
</tbody>
</table>
Example of Technology Transforming Copper Production

(PDC share; millions of pounds)

1983 – 100% conventional
2004 – 66% SX/EW
Koch Solution Extraction In-Pipe Reactor
Enhanced Sulfide Heap and Stockpile Leaching

- Mine
- Primary Crushing
- Sec/Tert Crushing
 - Milling (Chalcocite) (Chalcopyrite)
- Heap Leaching (Oxide) (Chalcocite)
- Solution Extraction
 - Acid
 - Concentrate Leaching
 - Electro-Leaching
 - Smelting
 - Electro-Refining
- Customers
Biologically Enhanced Leaching

leach solution

air

air
Leaching Developments – Bacterial Augmentation

- Stream contains 3×10^8 cells/ml genetically selected bacteria
- Delivers two separate bacterial strains simultaneously
- Skid mounted
- Design based on Bagdad plant shown below
Advanced Modeling to Improve Heap Performance

Air and solution modeling in heap

Temperature profile in heap
Enhanced Chalcopyrite Leaching – Bagdad Crystal Mountain
Morenci Enhanced Stockpile Leaching

- Low-grade ore from Western Copper deposit
 - Below mill cut off grade material
 - Mixed sulfide minerals – chalcopyrite, chalcocite
 - 188 million ton stockpile to be constructed
 - Air injection
 - Bacteria augmentation
 - Controlled solution application

- Largest engineered chalcopyrite stockpile leach in the world
Concentrate Leaching – Alternative to Smelting & Refining
Copper Extraction in 1980s and 1990s

- **Primary sulfide ores**
 - Mine
 - Flotation
 - Smelting
 - Refining
 - Rod Mill or Customer

- **Secondary sulfide and oxide ores**
 - Mine
 - Leaching
 - SX
 - EW
 - Rod Mill or Customer
Concentrate Leach Technology Replaces Smelting/Refining

Primary sulfide ores

Flotation

Smelting

Refining

Mine

Concentrate Leaching

Secondary sulfide and oxide ores

Leaching

SX

EW

Rod Mill or Customer
Copper Concentrate Leaching History

- Process developments - 1970’s and 80’s
 - Ammonia - Arbiter
 - Chloride - CLEAR, SOX, Cuprex
 - Sulfate - Roast/Leach/Electrowin (Lakeshore)
 - Many others
Copper Concentrate Leaching History

- **Process developments - 1970’s and 80’s**
 - Ammonia - Arbiter
 - Chloride - CLEAR, SOX
 - Sulfate - Roast/Leach/Electrowin (Lakeshore)
 - Many others

- **Reasons for lack of commercial success**
 - High cost (capital & operating)
 - Problems with materials of construction
 - Problems with operability/maintainability
 - Process complexity
 - Precious metals recovery problems
 - Problems with copper cathode quality
 - Primitive, early stage SX/EW technology
 - Not integrated with leaching operations
 - Significant advances in smelting technology
Copper Concentrate Leaching – More Recent Developments

- Ammonia - Escondida
- Sulfate
 - Phelps Dodge
 - Placer Dome
 - CESL/Teck Cominco (chloride-assisted)
 - UBC/Anglo American
 - Activox
 - Dynatec
- Biological
 - BHP-Billiton “BioCop”
 - Bactech-Mintek
 - Others
- Chloride/Bromide Process – Intec
- Chloride – Outokumpu “HydroCopper”
- Nitrate
- Other
Phelps Dodge Concentrate Leaching Milestones

- **2Q 1998** Sulfate-based concentrate leaching development started
- **1999-2000** Batch testwork at Hazen Research, Dawson and Phelps Dodge Process Technology Center
- **2000-2001** Continuous Pilot Plant Testing
- **3Q 2001** Technology Development Agreement executed with Placer Dome
- **Nov 2001** Bagdad HT Project approved
- **Mar 2003** Start-up: First concentrate feed
- **July 2003** All design parameters met, steady state operation

Four years from first testing to commercial demonstration
Solid-liquid Separation at Bagdad

August, 2003
Bagdad Concentrate Leach Plant Copper Production

Production (lbs)

- March 2003
- April 2003
- May 2003
- June 2003
- July 2003
- August 2003
- September 2003
- October 2003
- November 2003
- December 2003
- January 2004
- February 2004
- March 2004
- April 2004
- May 2004
- June 2004
- July 2004
- August 2004
- September 2004
- October 2004
- November 2004
- December 2004

Production (lbs) vs. Design Basis Production

©2006 Phelps Dodge Corporation
<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2004</td>
<td>Conversion of Bagdad demonstration plant to medium temperature process started</td>
</tr>
<tr>
<td>May 2005</td>
<td>Start-up: medium temperature and direct electrowinning (MT-DEW) process</td>
</tr>
<tr>
<td>Dec 2005</td>
<td>Completion of MT-DEW process demonstration</td>
</tr>
<tr>
<td>2Q 2007</td>
<td>Scheduled completion of Morenci facility</td>
</tr>
</tbody>
</table>
Bagdad MT-DEW Process Conversion – Super-fine Grinding
Morenci Concentrate Leaching Application

- Provides economically viable alternative to smelting and refining
 - Generates by-product acid for leaching
 - Eliminates freight cost for concentrate shipments and acid deliveries
 - Decouples Morenci from smelter balance dependency
 - Reduces Morenci’s mill conversion costs
- Morenci Western Copper concentrate mineralogy
 - Mixed chalcopyrite, covellite, chalcocite, pyrite
- Medium temperature and direct electrowinning (“MT-DEW”) process selected
 - Best fit with Morenci concentrate production and acid balance
 - Utilize existing EW and SX capacity at Morenci
- Copper production capacity = 75,000 tons per year
- Copper recovery slightly higher than smelting and refining
Production Decisions Impacted by Concentrate/Acid Balance

North American Concentrate
- Bagdad
- Sierrita
- Chino (partial capacity)
- Cobre
- Morenci (off line)

North American Leach
- Morenci
- Bagdad
- Sierrita
- Chino
- Tyrone (partial capacity)
- Miami (partial capacity)

Chino Smelter
- 650,000 tpy capacity
 - (off line)

Miami Smelter
- 750,000 tpy capacity
 - (operating)

External concentrate source
- Candelaria

External acid source
- External acid consumer

Chino Smelter
- 650,000 tpy capacity
 - (off line)

Miami Smelter
- 750,000 tpy capacity
 - (operating)
Morenci Concentrate Leaching Facility – 3D Model View
Other Developments Affecting Copper Hydrometallurgy

- Material Characterization
- Comminution
- Alternative Products
High-Pressure Grinding Rolls

- Cerro Verde milling circuit to include high pressure grinding rolls (HPGR) instead of SAG mills

Pros
- Higher throughput
- Greater energy efficiency
- Greater flexibility
- Lower unit cost

Cons
- Additional capital cost

Financial Impact
- Significantly reduces power consumption and unit production costs
Material Characterization – QemSCAN Technology
New Copper Products

- Copper powder technology
 - Potential replacement for cathode to rod
 - Specialty copper powders
- Copper powder process reduces or eliminates the following:
 - Manual harvesting of cathodes
 - Cell cleaning
 - Stainless blank repairs and replacement
 - Stripping machines
 - Slippery or brittle cathodes
- Focused on reducing costs and improving process safety and efficiency
- PDC proprietary technology
- Demonstration plant in operation at Morenci, AZ